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A semi-implicit algorithm for the solution of the nonlinear, three-dimensional, resistive 
MHD equations in cylindrical geometry is presented. The specific model assumes uniform 
density and pressure, although this is not a restriction of the method. The spatial 
approximation employs finite differences in the radial coordinate, and the pseudo-spectral 
algorithm in the periodic poloidal and axial coordinates. A leapfrog algorithm is used to 
advance wave-like terms; advective terms are treated with a simple predictor-corrector 
method. The semi-implicit term is introduced as a simple modification to the momentum 
equation. Dissipation is treated implicitly. The resulting algorithm is unconditionally stable 
with respect to normal modes, A general discussion of the semi-implicit method is given, and 
specific forms of the semi-implicit operator are compared in physically relevant test cases. 
Long-time simulations are presented. 6 1987 Academic Press, Inc. 

1. INTRODUCTION 

Nonlinear magnetohydrodynamic systems often evolve on time scales that are 
long compared ‘fro, those associated w&h the fastest normal modes of the system. 
Examples are: the ‘growth and saturation of resistive instabilities [ 11; relaxation, 
sustainment, and flux generation in the reversed field pinch [2, 31; low frequency 
current drive models for fusion plasmas [4]; the onset of the tokamak major dis- 
ruption [S]; and, the response of the solar coronal magnetic field to slow 
photospheric motion [6]. These phenomena are dominated by low frequency, long 
wavelength motions that may have locally large spatial gradients. Their numerical 
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simulation, generally required because of their nonlinear an ~u~~i~~~e~~~~~a~ 
nature, is an especially diffkult problem. Adequate spatial resolution 
many mesh points (modes) be used. Stability restrictions placed on 
poral approximations then result in uneconomically small time-steps, w  
implicit treatement of nonlinear terms either requires iteration (as in finite dif- 

ods [7]), or results in unacceptably large matrices (as in s 

One approach to performing such computations is to employ 
approximations, such as reduced equations [8] or incompressible m 
eliminate the fastest normal modes from the system. Reduced equations 
successfully applied to specific magnetoplasma ~o~~g~ratio~s. However codes 
based on specialized equations may be of limited ap~~i~a~i~ity. Into 
models remove the fast magnetosonic mode, but may also eliminate 
features of the physical system [9]. Another approach is ly implicit methods 
to only certain terms in the governing equations. For exa an implicit pressure 
advance may be used to eliminate the fast magnetosonic m while retaining long 
wavelength compressibility [lo]. The time step remains li by the shear Affven 
wave, which still evolves rapidly compared to the phenomena of i 

Recently, a new class of methods for solving the time-dependent equations 
based on an algorithm developed for long-range weather simulation [ II] has been 
introduced [12, 131. These semi-implicit algorithms allow very large time-steps, yet 
avoid the complexity and large memory requirements associated with implicit 
methods. In the semi-implicit methods for MH 

etized equations that do not affect the con 
le and efficient means of enhancing stabih 

D equations in order to eliminate the fas 
~ubs~q~e~t~y, this procedure was extended to eliminate the shear Alfven time-step 
constraint as well [ 131. This method is unco~d~tio~a~~y stable with respect to ah 
Aifvtn modes and consequently permits such large time-steps that ace~r~~~i 
becomes the most important considerations in the choice step size. The semi- 
implicit method may be implemented using a variety of fferent time advance 
schemes and forms for the semi-implicit terms. The choice of the 
implkit method, both in the order of accuracy 
terms, can affect the size of the allowable time-ste 

ed efficiency and accuracy for long-time 
c~mp~~tat~o~s. 
paper serves as an amplification and extension of our revious work [ 131, 

Its purpose is fourfold: to present a particular three- 
algorithm that has proven useful in the sirn~~at~o~ of the long-time seal 
phenomena; to provide additional insight into the use an 
implicit method; to exhibit the accuracy o licit method; and, to 
present several specific examples of nonlinear skate 
the power and utiiity of the semi-implicit al ed as 
follows: in Section 2 we present the physical model, an e spatial and temporal 
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approximations employed in the simulation; in Section 3 we present a brief general 
discussion of the semi-implicit method and display two particular forms of the semi- 
implicit operator that we have found useful; in Section 4 we display the accuracy of 
the method by presenting linear and nonlinear examples using different time-steps, 
and with different semi-implicit operators. We also present long-time scale three- 
dimensional simulations in several magnetoplasma configurations. Section 5 con- 
tains the discussion and conclusions. 

2. CBMPUTATIONAL MODEL 

In this section we present the specific mathematical model addressed in this 
paper, and the spatial and temporal approximations employed in its numerical 
solution. 

2.1. MathematicaE Model 

We are concerned with the low-frequency, long-wavelength motion of an elec- 
trically conducting fluid in the presence of a strong magnetic field. When the 
magnetic energy density is large compared with the internal energy density, as is the 
case for many applications, these motions are governed primarily by the interaction 
between the total Lorentz force acting on the fluid and the induced magnetic field 
due to fluid motion. The evolution of such a system is described by the (force-free) 
MHD equations, which, in a convenient set of nondimensional variables, can be 
written as 

av 
pat= -SpV*VV+SJxB+vV2V, (lb) 

where B is the magnetic field measured in units of a characteristic field stren th B,, 
V is the fluid velocity measured in units of the Alfven velocity vA = B,/ P 47cp,, v] is 
the resistivity measured in units of a characteristic resistivity y,,, length is measured 
in units of a characteristic length a, time is measured in units of the resistive dif- 
fusion time ~~ = 4na2/c2y,, A is the vector potential, J is the current density, p is 
the mass density measured in units of pO, and we have chosen a gauge such that the 
gradient of the electrostatic potential vanishes. In these units the Lundquist number 
S = vAzR/a is the ratio of the resistive and Alfven time scales, and the nondimen- 
sional viscosity coefficient is v = vOzR/a2, where vg is the characteristic viscosity; v 
measures the ratio of the resistive diffusion time to the viscous diffusion time. Con- 
sistent with the force-free assumption, we have ignored the effects of perturbed fluid 
pressure, assume the mass density to be uniform in space and time, and take p = 1. 

Equations (1) are fully compressible, and describe both shear and compressional 
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Alfven waves, as well as resistive instabilities and resistive and viscous 
Their nonlinear evolution is particularly appropriate to the description of 
relaxation in the reversed-field pinch (RFP) [14], to other phenomen 
origin is primarily electromagnetic. Because of the ly separated time SC 
ported by these equations when S is large, their solution presents an extremely dif- 
ficult test of any numerical method. 

The mathematical model described here supports a wide variety of solutions 
ranging from global kink and tearing modes to equency, short wav~~~mgtb 
turbulence. We emphasize that our goal is to si e the long time scale, non- 
linear, three-dimensional evolution of long wave1 low frequency motions for 
which geometric effects such as magnetic shear, field line curvature, an 
daries are important. We therefore employ temporal ap~roximatio~s in cyh 
geometry that permit time steps far in excess of those allowed by explicit m 

e make no attempt to simultaneously model turbulence, for which high 
resolution, short time-step explicit methods are appropriate [ 15 1. 

2.2. Spatial Approximation 

e choose cylindrical coordinates (Y, 0, z), 0 < r d Y,,~, 0 < B < 2n, 0 d z d L, and 
ne the scale length a such that Y,,, = 1. We further assume that the solutions of 

(1) are periodic in z with L = 27-S, where R is the aspect ratio. Then introducing 
the discrete mesh O., = 2$j - 1 )/M, j = 1, 2 ,..., M; zk = 2n(k - 1) R/N, k = 1, 2,..., N; 
any quantity can be represented as a finite Fourier series 

Ml2 
f(r, @j, Zk)= C 

y f,. Jr) eiw,+ w/R), 
(21 

m=-MjZ+ln=-N/2+1 

where the complex finite Fourier coefficients fm.n are defined as 

f,.n(r)=+-~~ f f(Y,e,,Zk)e~'("Ol+,;zk!R), 
,=l k=l 

and the reality of f(r, 8, z) requires that f+, in =f 2, n. The representation (2) is 
chosen because of the periodic boundary conditions in 8 an 
vergence properties for smooth solutions [16]. 

Introducing (2) into (1) yields 

aA -=S(VxB),,.-(?pxVx at 
av m,= -SW-W),,.+S(Jx at (4bj 

where A,, n and V, n are the Fourier coefftcients of the vector potential and 
velocity, and the subscript ( ),., on a nonlinear term or operator represents the 
finite Fourier transform of that term. 

SXl,7Qi?-5 
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Equations (4) are a set of MN nonlinear partial differential equations in the 
radial coordinate, Y, and the time, t, that describe the evolution of the complex 
Fourier coefficients A,,, and V,, n. They are the equations that we solve 
numerically. The nonlinear terms appearing on the right-hand side of (4) are 
evaluated using a fully dealiased pseudospectral algorithm in combination with the 
fast-Fourier-transform (FFT). This has been adequately described elsewhere [ 171. 
It remains to describe the radial approximation of the operators appearing on the 
right-hand side of (4). 

The operator (yJ),, n = (~57 x V x A),, n appearing in (4a) couples Fourier modes 
if 9 = ~(u, 8, z) and must be represented by a convolution sum, rendering an implicit 
treatment difficult. For this reason we limit the resistivity to have radial variation 
only. (This is not a fundamental limitation, as semi-implicit methods could be 
applied to this term [13].) 

It proves convenient to introduce two staggered radial meshes [lo, IS]. We 
define A@, A,, B,, V, J,, J,, and, using simple averaging, (VxB),, (Vx BL, and 
Jx B on the mesh (ri, i= 1, I) such that pi = -Ar/2, r2 = Ar/2, (rI+ rIpI)/ = 1; 
and we define A,, B,, B,, J,, and (Vx B), on the mesh (ri+,,,, i= 1, I- 1) such 
that ri+ 1,2 = (ri+rj+1)/2 and rIplj2= 1. The magnetic field and current density are 
then defined in terms of finite curl operators on the two meshes 

1 ” ’ 

(5) 

(6) 

where k = n/R, and the subscript ( )m, n has been suppressed on all Fourier coef- 
ficients. These operators have the desirable property that their divergences vanish 
identically. Additionally, the double curl operator J = Vi+ 1,2 x Vi x A couples only 
nearest neighbor points on the appropriate radial meshes. The staggered mesh also 
allows boundary conditions to be introduced in a natural way, as described in 
Section 2.4. 
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2.3. Temporal Approximation 

Since the linearized MHD equations exhibit wave-like solution 
introduce leapfrog time discretization into Eq. (4), with A a 

red time intervals. This procedure is complicated by the fact that the term 
on the right-hand side of (4a) contains variables define 
This is not a problem when V is small, but as zero-orde 

algorithm becomes unstable. A similar problem arises in the treatmeut of the term 
* VV in Eq. (4b). We treat these terms separately with a simple predictor- 

corrector method. The resulting algorithm is 

A*-A’l-1/2 

At 
= S(Vn x B” ~ 1’2), (7a) 

B*=VxA*, (7b) 

a n + 112 _ A”- 112 

At 
=S(V”XB*)-~(VXVXA”-“~+ 

(7d) 

J n + 112 = V x B” + 112, (7e) 

v*-V” -----= -mn.vvn, 
At 

V n+l -V” 
At 

= -~*.**+SJ”+L!2XB~+~~2+~y(v2Vir+l+v2 

where we have again suppressed the subscripts ( ),,,, an have treated the dis- 
sipative terms implicitly to avoid severe time-step restrictions when rg or v are 
locally large. The quantities A*, B*, and V* are provisional values intro 
through the predictor steps (7a), (7b), and (7f). The algorithm defined above is 
second-order accurate in At for linearized normal modes (provided there is no 
equilibrium flow), but is formally first-order accurate. (A second-order predictor 
results in an unconditionally unstable algorithm.) 

When (5) and (6) are introduced into (7c), the radial component of the vector 

potential at time level n + l/2 appears only algebrically, and can be eliminated from 
the system. Thus the induction equation reduces to two simultaneous equations for 
if;+1/2 and AZ . n+ l/2 Similarly, the vector Laplacian appearing in the eq~a~~o~ of 
motion (7g) couples only the radial (r) and azimuthal (8) components of Vnfl. 
Thus only simple 2 x 2 block tridiagonal matrices need be inverted. The axial (z) 
component of V is advanced separately. 

The algorithm (7) is linearly stable provided the conditions 
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are satisfied. Here k,,, is the magnitude of the largest wave vector described by the 
simulation, V, is the Alfven velocity, V is the magnitude of the flow velocity, and 
At is the time step. Condition (8b) is required to stabilize the advective terms 
NV. V, and is significant only when V- V,. Condition (8a) arises from the 
wavelike normal modes of the system, and presents a severe restriction on the 
allowable time-step. The semi-implicit method eliminates this restriction, and allows 
the computation to proceed on the longer time scale defined by Eq. (Sb). The 
introduction of the semi-implicit term into (7) will be discussed in Section 3. 

2.4. Boundary and Initial Conditions 

To effect a solution, Eqs. (4) must be supplemented by boundary and initial con- 
ditions. These are descibed below. 

For our applications we have taken the initial conditions to be axisymmetric, 
one-dimensional solutions to the ideal MHD equilibrium equation J x B = 0. Non- 
axisymmetric Fourier modes are introduced at small amplitude, either as random 
perturbations or through a data file. Unstable modes will then evolve allowing for 
the study of the long-time nonlinear behavior of the system. 

At the origin Y = 0, regularity requires that Fourier coefficients of a vector U 
corresponding to different values of the azimuthal mode number, m, be treated 
separately. In particular, at r = 0 we impose: 

for m = 0, 

for /ml = 1, 

U,, Ue- Cr, 
u, - c, + C,r2; (94 

U,, UO- C, + C,r2, 

Uz - Cr; 

for Irnl> 1, 

U,, UB-Crmpl, 

U, - CF. 

Pb) 

(9c) 

In practice, these conditions are imposed only on the % and z components; the 
radial components is then given as U, = iU,. This assures that the Cartesian com- 
ponents of U are unique at r = 0. 

At the outer boundary we specify the m = 0, y1= 0 components of the tangential 
electric field E,( 2) = EBO( t) d, + E,,,(t) d,. Then at the outer boundary the % and z 
components of the vector potential satisfy the evolutionary equations 

. aA, n 
e r xd= -8,~E,6,,,~, at (10) 



SEMI-IMPLICIT MHD CALCULATIONS 337 

which, through the radial component of (5), assures that the outer boun 
remains a flux surface. Because of the construction of the radial mesh, as desc 
in Section 2.2, the radial component of A is self-consistently determined at t 
boundary without the need for a boundary condition. 

In the absence of viscosity, the radial component of the velocity at t 
boundary is given by 

v =(E-vJ)x I SB2 ’ 
(11) 

as long as I’? is negative (as is the case for most fusion applications); wit 
Eq. (11) can always be applied. Equation (11) is consistent with the P 
arising from an applied electric field, and with Ohm’s law provided 
orthogonal to B. In the presence of viscosity, the tangential components of V may 
be specified arbitrarily and are assumed to vanish. 

3. THE SEMI-IMPLICIT ALGORTTHM 

As discussed in Section 2.3, the algorithm defined by Eq. (7) is restricted to s 
time-steps determined by Eq. (8a). Efforts to remove y a fully 
implicit treatment of the nonlinear wave-like terms (V x m, n result 
in a coirpling of all Fourier coefficients and requires the inversion of intractably 
large matrices. In the semi-implicit method we modify the original rnorn~~t~rn 
Eq. (lb) by the addition of a linear term with a coefficient proportionaB to the time 
step. We thus replace (lb) with 

av -=F++At at (12) 

where F represents the right-hand side of (lb), a is a numerical constant, and 
the linear semi-implicit operator whose form is (at point) arbitrary. 
corresponding modification to the algorithm (7) is to r ce (7g) with 

V n+l-vn 

At 

where F represents the right-hand side of (7g). Solution of Eq. (13) requires t 
inversion of the linear operator I - olGd t, where I is the identity operator. Further- 
more, since G is linear, the Fourier coefficients remain decoupled. As shown in 
Ref. [ 131, suitable choices of c( and G may remove the severe time-step restri~t~o~~ 
imposed by Eq. (8a). 

In this section we discuss the properties of the modified system described by (la) 
and (12) (including errors introduced by the semi-implicit term), demonstrate 
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heuristically the stabilizing properties of the method, and explicitly display two 
possible forms of the operator G suitable for the MHD equations. At this point, 
however, we note two properties of the method: (1) the original system is recovered 
in the limit At -+ 0; and, (2) the physical system is unaffected in the limit aV/dt + 0. 
Thus, steady-state solutions obtained with the semi-implicit method are solutions of 
the original equations. 

3.1. General Considerations: Accuracy 

For the purposes of our heuristic analysis, we consider the simple linear system 

;= BV, 

;=A,, (14b) 

where A and B are linear operators independent of time, and u and v are vectors. 
Equations (14a), (14b) can be combined to yield a wave equation for v, 

where L = AB. An identical equation holds for u if A and B commute. Equations 
(14a), (14b) are analogous to (la), (lb), and Eq. (15) is analogous to the linearized 
MHD wave equation 

For simplicity, we assume that L has a complete set of orthonormal eigenvectors 
( r,}, with corresponding eigenvalues ( - 02 3. Then expanding v in the eigenvectors 
of L, we find that the normal modes of (15) evolve according to 

where the ak are the coefficients in the normal mode expansion of v. 
Now consider the modified system 

(lab) 
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where is an operator with complete, orthonormal eigenvectors {ck) and eigen- 
values -cz). Equations (18) correspond to Eqs. (la) and (12) of the 
sections. Combining (18a), (18b) we find, analogous to ( IS), 

(1 -IAtG)$= LV, (19) 

which is the wave equation for the modified system. 
We now inquire to what extent the solutions of (19) correspond to those of the 

original Eq. (15). To this end we expand v in the eigenvectors tk of L (again with 
expansion coefficients a,), determine the effect of G operating these eigenvectors by 
expanding them in the eigenvectors Sk of G, and take the inner product of the 
resulting equation with c,,,. The equations for the original normal modes can then 
be written as 

where bkm = (i,, ck) is the inner product of the mth eigenvector of G with the kth 
eigenvector of L, and ( )* denotes the complex conjugate Thus the evolution sf tke 
ak in the modified system differs from their evolution in the original syste 
described by Eq. (17). 

When At --+ 0, (20) reduces to (17). For finite At there are two sources of error. 
First, the equations for the ak are coupled, so that they do not evolve i~de~e~d~~- 
tly. It is thus desirable to choose G such that its eigenvectors are almost p 
those of L; then bkm = Ckhkm +E~~ with Ck - I, skm 4 1. The choice 
obvious, but, as pointed out in Ref. [131/, this can defeat the purpo 
method, since it requires inversion of the same operator as in a fully implicit 
method. A more relevant case is one in which At is large and we wish to describe 
only a subset of the normal modes accurately, say, for 0 <m d K. It is then 
desirable to choose G such that its eigenvectors correspond closely to those 
only this subset, and may be arbitrarily oriented for m outside this range. T 
eigenvectors of G within the subset will also be orthogonal to those of L ou 
subset, so tbat the normal mode Eqs. (20) decou le for Qdm <X The re~ai~~~~ 
modes cannot affect the modes of interest. 

The second source of error arises from the term I + ctdt XI o:/b,,/2 appearing in 
(20). Thus, aside from questions of numerical stability, we must choose At smah 
enough that laot At\ < 1 for modes of interest. This conclusion is i~depc~de~t of the 
correspondence of ci to 02 ; however, the problem is amplified if U; >> (0;~ We 
expect that the closer G approximates L for modes of interest, the closer wih be the 
correspondence between it, and wi. We will return to this point when we discuss 
specific examples in Section 4. 
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We thus arrive at the almost self-evident conclusion that G should closely 
approximate L for the modes of interest if they are to be accurately represented for 
large dt. This is particularly important and difficult for MHD where the operator L 
is anisotropic; G should mimic these anisotropies as closely as possible. 

3.2. General Considerations: Stability 

For simplicity of analysis, we consider the case where tk is simultaneously an 
eigenvector of A and B with eigenvalue iok. Then assuming that G closely 
approximates L, as discussed in Section 3.1, and applying the leapfrog algorithm to 
(Isa), (lgb), we have 

c;t-f 112 _ c;- w 

At 
= iw,a; 

k = 0, 1, 2 ,..., N, 

(1 +aa;At) ak 
ll+l-*” (21) 

k . n+1/2 

At 
= lukck 

where the ck = (<k, U) are the expansion COefhientS for u, and the ak are, as before, 
the expansion coefficients for u. These are the analogues of equations (7a)-(7f) and 
(13). A straightforward stability analysis shows that (21) is unconditionally stable 
provided the condition 

o;At2 
ao;At>-- 

4 
1 (22) 

holds for all k in the calculation. This serves to determine the coefficient CL When 
oEAt2 < 4, (21) is explicitly stable and CI is set to zero. 

If we further assume that L possesses a maximum eigenvalue uiax, and that 
cJ:-o$, then the accuracy condition aa,fAt < 1 for modes of interest, discussed in 
Section 3.1, reduces to (co, At1 < 2, i.e., the time step should be chosen such that the 
modes of interest are explicitly stable. Since these modes are presumably low fre- 
quency, a considerable advantage is still gained over purely explicit methods, as will 
be demonstrated in Section 4. The maximum time-step is thus dictated by accuracy, 
rather than stability, considerations. 

We note that, in the wave equation for normal modes, i.e., 

the role of the semi-implicit term is to effectively increase the inertia of the system 
as a function of k. This is heuristically the means by which stability is achieved. 
(This is especially clear for the special case C$ = k2.) Thus low-k modes are 
relatively unaffected, while the frequencies of high-k modes are modified such as to 
render them stable. This k-dependent inertia is achieved through the spatial depen- 
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dence of the operator 6, and not by enhancing the overall mass of the system, as in 
previous methods [ 191. 

We close this section by noting that the semi-implicit algorithm, as given by 
Eq. (21), introduces no damping. Since the dispersion relation for the high-k modes 
may be considerably modified, it may be advantageous to introduce some 

iffusion, e.g., through the viscous term in Eq. (lb). 

3.3. Semi-implicit Terms for MHD 

ef. [13] a semi-implicit term was given for the MH equations. That term 
tamed from the linearized MHD operator 

LV=VxVx(VxB,)x (241 

by replacing B, with a constant vector C,, and then retaining only terms p Or- 
tional to C:, where c1= r, 19, z. However, this form couples all components the 
velocity. In the present case we further ignore any coupling between V- and 
(V,, V,). This allows us to retain 2 x 2 block tridiagonal st ure of the algorithm. 
The exact form of the operator is detailed in the Appendix. find that, in analogy 
with (22) and with results obtained in Ref. [ 13 ], stability results provide 

C2k2 At2> 3. max ’ 
S’B;ki,, At2 _ 1 

4 

is simultaneously satisfied for CI = r, 8, z. 
The form of the semi-implicit term based on (24), and displayed in the Appendix, 

contains much of the anisotropic character of the original HD equations. The 
essence of stability is provided by the elliptic par% of that operator. We are thus led 
to try a second, extremely simple form for the operator, i.e., 

GV = v2v. (261 

The algorithm based on Eq. (26) is very easy to implement. Explicit codes already 
containing implicit viscosity can be modified to be semi-implicit with a minimum of 
programming effort; the viscosity is merely explicitly subtracted at the old time 
level. The algorithm is stable provided 

vk;,,At> 
S2B2ki At2 

max - 1. 
4 

k27) 

where Y is the “viscosity” coefficient, and B is the magnitude of the magnetic field. 
(The resulting algorithm is no longer dissipative.) owever, the anisotropy inherent 
in the original MHD operator is not included, and will affect accuracy. [Note that, 
upon comparison with Eq. (25), v contains a factor of At.] 

In the following section we give specific comparison between results obtained 
sotropic term based on (24) and with the isotropic term (26), for 
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4. EXAMPLES 

In this section we present several examples of computations performed with the 
semi-implicit MHD algorithm described in the previous sections. The purpose of 
these examples is to demonstrate the accuracy and power of the method, and to 
provide a comparison between different forms of the semi-implicit operator. 
Detailed physics studies will be presented in future publications. 

4.1. Torsional Aljiitn Waves 

As mentioned previously, the MHD equations support a wide variety of linearly 
stable normal modes. A particularly simple test case is that of torsional (shear) 
Alfven waves in a uniform axial magnetic field (with B, o = 1). These modes are 
characterized by poloidal mode number m = 0 and arbitrary axial mode number n. 
They propagate parallel to the zero-order field, with each field line oscillating 
independently (i.e., independent of radius) at frequency w, = n/R, where R is the 
aspect ratio. The anisotropic nature of these modes provide a simple yet demanding 
test of the form of the semi-implicit operator. 

The initial conditions for this case are 

IO.14 ' 1 r 
10 20 30 40 50 60 

tlr, 

FIG. 1. Poloidal kinetic energy versus time for the llz =O, n= 1 standing Alfvtn wave using the 
anisotropic semi-implicit operator. The time step is dt = zA, and the resulting period is T= 6.81 z*. (The 
analytic value is T= 2zz,.) 
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lo-' I L 1 
it2 

/ , 1 I I / 
40 120 160 200 

tlTA 

343 

FIG. 2. The same case as shown in Fig. 1, except nsing the isotropic semi-implicit operator. Wiih 
At=z A, the period is T= 19.05 sA. 

where E 4 1; we have perturbed both the (m = 0, n = 1) and (m = 5, n = - 1) modes 
to obtain a standing wave solution, and have chosen n = I to obtain the ~r~rnar~ 
(longest wavelength) mode. With aspect ratio R = 1, this mode should oscillate at 
frequency w1 = 1 (i.e., have period T, = 27~ Alfven times). e use a mesh of 65 
radial points and 16 axial points, and advance the equations forward in time using 
the algorithm (7a)-(7f) and (13). 

The results of this are shown in Figs. l-3. In Fig. 1 we plot the kinetic energy ver- 
sus time (measured in units of Alfven times) for the case dt = 1 (corresponding to 
one radial Alfvtn transit time), using the anisotropic semi-implicit operator based 
on Eq. (24). The period of oscillations is 6.81~~~ very close to the analytic value, 
even though the time step is over 30 times larger than would be allowe Y an 
explicit algorithm. In Fig. 2 we show the results for the same parameters, but using 
the isotropic semi-implicit operator, Eq. (26). We lind that the period is 19.55r,, 
too large by a factor of about 3. When the time step is reduced to dt = 5.1, the 
T= 6.41 is obtained, as shown in Fig. 3. (This time step is still over 3 t 
than the explicit limit.) We again note that the semi-implicit method int 
damping. 

The error introduced by the isotropic operator (26) can be understoo 
qualitatively by determining the numerical dispersion. From (21) we find that the 
dispersion relation for the algorithm can be written as 
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FIG. 3. The same case as Fig. 2, except with At =O.l zA. Now the period is T= 6.41 zA. 

where w  is the frequency determined by the algorithm, and 

In this expression, wk is the analytic frequency. From (22), stability requires 

&,, < 4. For simplicity we choose /-Ii,,, = 4, and assume that ornax CZC+,~~. Then 
when w  ,,,dt$ 1, Eq. (29) can be rewritten as 

tan 

,oAt bwW2 
-?- = 1 + (0; - ~:)(At/2)~’ (31) 

When gik = wk, Eq. (31) is identical with that obtained with a second order accurate 
implicit method. This is the case for the anisotropic operator (24), since it only feels 
disturbances parallel to the magnetic field. However, the isotropic operator (26) 
also measures the radial variation of the mode, which physically plays no role in 
determining the frequency. In this case ~2 >e$ and a reduction in the computed 
frequency results. 

4.2. Growth and Saturation of Resistive Instabilities 

Resistive instabilities present a difficult computational problem due to their slow 
growth and radial structure, and have been a prime candidate for long time-step 
algorithms [7, 10, 201 and reduced models [S, S]. Here we apply the semi-implicit 
method to the linear growth and nonlinear saturation of these modes. 
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F:c. 4. Radial magnetic energy versus time for the unstable nz = i, n = -2 tearing mode for various 
time-steps using both the isotropic (solid lines) and anisotropic (dashed lines) forms of the semi-implicit 
operator. 

We pose an initial value problem where the initiai equilibrium magnetic fields are 
given by the safety factor profile 

= 0.4( 1 - 1.8748~’ + 0.83232?), (32) 

and are characteristic of the magnetic fields in the eversed-Field Pinch ( ). For 
the cases presented here, we choose R = 1, and take the Eundquist ~~rnb~~ % = IO”. 
The profile (32) has been studied previously [93, and is known to be unstable to a 
nonresonant m = 1, n = -2 mode, which we perturb with a linear e~ge~f~nct~~~ of 
amplitude (B,,, _z)max/(BzO.o)max = 10-5. The nonlinear equations are then 
advanced in time on a 65 x 8 x 16 mesh for various time steps, using both isotropic 
and anisotropic semi-implicit operators, to determine the accuracy of the method. 

The results of this study are shown in Fig. 4, where we t the energy in the 
radial magnetic field of the unstable (19 -2) mode as a nction of time. 
simulations are performed for 150 Alfvin times (0.15 resistive diffusion t-me 

esults obtained with the isotro ic operator are shown as solid curves, 
those obtained with the anisotropic operat r as dashed curves. For both operat 
unstable modes were found to grow linearly and then saturate. It is apparent t 
in terms of linear growth rate, the anisotropic operator can. tolerate a 
time step as the isotropic operator, for the same accuracy. 0th methods seem to 
require At < 0.5 for reasonable agreement with known results. This corresponds to 
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ydt 5 0.05, and is consistent with the requirements placed on fully implicit solutions 
of the linearized equations [ 211. 

We note that, while differences are observed in the linear phase, the nonlinear 
saturated state obtained in these runs appears to be independent of size of the time 
step, or of the form of the semi-implicit operator. This may be because in this state 
d/at + 0, so that the remarks of Section 3 become relevant. 

Each of the runs presented in Fig. 2 required less than 10 minutes of CPU time 
on a CRAY-I computer. 

4.3. Long Time-Scale Simulations 

In the previous section we presented examples of the computation of the linear 
growth and nonlinear saturation of a single unstable mode. In many cases of 
interest, several unstable modes evolving simultaneously can affect the overall 
saturation. Perhaps more importantly, their nonlinear interaction for times well 
beyond that required for saturation may reveal new physical phenomena. Such 
computations have provided the motivation for the development of the semi- 
implicit method. In this section we give examples of the simulation of such an effect 
that demonstrates the full power of the method. These calculations are performed 
with both the anisotropic and isotropic semi-implicit operators to compare and 
constrast their effect on the nonlinear physics. 

We consider the equilibrium profile given by Eq. (32), which we perturb with 
both the (m = 1, IZ = - 1) and (m = 1, n = -2) modes. We sustain the current by 
applying an average axial electric field at the wall that is constant in time. The 
poloidal average electric field at the wall is set to zero so as to conserve toroidal 
flux. The resistivity is constant in space and time, with Lundquist number S= 103. 
With unit aspect ratio, the spatial mesh is 65 radial, 8 poloidal, and 16 axial points. 
This case has been the subject of a previous study [9], where its nonlinear 
evolution was computed for up to 200 Alfvtn times (0.2 resistive diffusion times) 
with several nonlinear 3-D MHD codes. There it was found that the nonlinear 
growth and saturation of the unstable nonresonant (1, -‘2) mode led to the 
generation and sustainment of an average reversed axial field (B,) at the wall, as is 
observed in reversed-field pinch (RFP) experiments. These simulations indicated 
the attainment of a steady held-reversed state dominated by an rn = 1, N = -2 
helical perturbation that was maintained against resistive diffusion by finite flow. 

Using the semi-implicit method we have computed the nonlinear evolution of this 
case for times in excess of one resistive diffusion time (> 1000 Alfven times). In 
Fig. 5 we plot the energy in various modes as a function of time (measured in 
resistive times) for a simulation using the anisotropic form of the semi-implicit 
operator. The initially unstable nonresonant (m = 1, n = -2) mode grows and 
saturates in about 0.02 resistive times, producing a helical state in agreement with 
previous results. However, this state is in turn unstable to the resonant (1, -3) 
mode, which saturates in about 0.1 resistive times at an amplitude approximately 
equal to that of the (1, -2). The (1, -2) and (1, -3) then proceed to periodically 
exchange energy for -0.4 resistive times, resulting in a time-dependent, tield-rever- 
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FE. 5. Radiai magnetic energy in various Fourier modes as a function of time (measured in resistive 
diffusion times) for a long-time RFP simulation with S= lo3 using the anisotropic semi-implicit 
operator. 

sed state. At t zz 0.5~~ a further nonlinear transition occurs, with the (1, - 3) and 
(1, - 4) modes interchanging roles. For t 2 0.7~~ a fully three-dime~sio~aI resistive 
steady state results. 

The nonlinear periodic energy exchange between the (1, - 2) and (1, - 3) modes 
occurring for 0.15~~ S t 5 0.5~~ can be understood bj considering q(O), the value of 
the safety factor at r = 0. In Fig. 6 this quantity is plotted as a ftinction of ti 

.66 

.64 

.4 .6 .a 1.Q 
1/TR 

FIG. 6. Safety factor at I = 0 versus time for the case shown in Fig. 5 
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FIG. 7. Total kinetic energy versus time for the case shown in Fig. 5. 

Initially, q(0) < 0.5, so that the unstable (1, -2) mode is resonant from above. As is 
well known [a], the growth of such a mode raises q(0) (“second reconnection”), 
increasing the shear, and stabilizing the mode. This behavior is seen at early times 
(t < 0.1~~) in Fig. 6. However, this profile modification is suflicient to destabilize the 
resonant (1, -3) mode, whose evolution is such as to lower q(O), i.e., to remove the 
unstable resonance (“first reconnection”) [2]. This is seen in Fig. 6 for 0.1~~ 2 
t 5 0.22,. The achievement of q(0) < 0.5 again destabilizes the (1, -2), causing q(0) 

. 
.w 25 
d 

.2 .4 .6 .8 1.0 

t/qq 

FIG. 8. At/At,.,, the ratio of the actual time-step to that determined by the CFL stability limit, 
versus time for the case shown in Fig. 5. 
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to increase, which in turn destabilizes the (1, -3), causing q(O) to decrease 
periodic oscillation about q(0) = 0.5 is apparent in F 
Finally, at t x 0.5~~ the interchange of the (1, - 3) a 
increase abruptly, followed by the attainment of a resisti 
nonlinear transition is as yet not fully understood. 

In Fig. 7 we plot the total fluid kinetic energy as a function of time for s case. 
Good agreement with previous results for t sO.2r, (the extent of the evious 
calculations) is seen by comparison with Fig. (6b) of 

In Fig. 8 we plot At/A&, the ratio of the actual time-step to the time-St 
would be required by a fully explicit calculation. The actual time-step is a 
throughout the run to assure that Eq. (Sb), the advective Courant limit, is satisfied. 
Initially we have taken At = 0.5~~. The time step then decre 
develop from both the nonlinear instabilities and the radial 
A close correspondence is seen between the “peaks” of Fig. 7 and the “vallleys” of 
Fig. 8. During the initial nonlinear state At z 5At,,, is attained; in the long-fme 
nonlinear phase, At Z=Z 7AtCFL. 

In Fig. 9 we plot the modal energy versus time for the same case, except here we 
have employed the isotropic semi-implicit operator V’S/8t. Note that this 
calculation has been run for 1.3 resistive diffusion times. Again we see the initial 
generation of a (1, - 2) helical state, the destabilization of the (1, - 3) mode: the 
periodic energy exchange between the (1, - 2) and (1, - 3) modes, the ~~ter~ba~ge 
of the roles of the (1, - 3) and ( 1, - 4), and the eventual approach to a three- 
dimensional resistive steady state. The final distribution of MO al energy is the same 

IO.13 LABMN ; 

10-17C 
,i 

.2 .4 .6 .8 1.0 1.2 

tlqj 

FIG. 9. Radial magnetic energy in various Fourier modes as a function of time for the same non- 
linear case, except using the isotropic semi-implicit operator. Note that the same nonlinear phenomena 
occur as in Fig. 5; the time scales here are lengthened by -30%. 

581;7012-6 
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for both anisotropic and isotropic semi-implicit operators. The primary difference 
between the cases is that all time scales, including the time to achieve steady state, 
seem to be lengthened by approximately 30% when the isotropic operator is used. 
This results from the difference in eigenvalues between the isotropic semi-implicit 
operator and the anisotropic MHD operator, as discussed in Sections 4.1 and 4.2, 
and not from inaccuracies in the high k dynamics. 

The calculations presented here required approximately 2 h of time on a CRAY-I 
computer, and spanned slightly more than one resistive diffusion time. For the same 
spatial resolution, one of the explicit calculations [16] reported in Ref. [9] 
required approximately 20 h of CRAY-I time to compute for 0.2 resistive diffusion 
times. We estimate that each of the calculations presented in this section would 
require more than 100 hours of CRAY-I CPU time if performed with previous 
explicit methods [16]. The power of the semi-implicit method is self-evident. 

4.4. The Effect of Nonlinear Advection 

Many of the well-known difficulties occurring in computational hydrodynamics 
and MHD arise from the presence of the advective term V * W in the momentum 
equation. Among these difficulties are the generation of shock waves, and the onset 
of nonlinear numerical instabilities. In models of MHD where the Lorentz force is 
dominant, and where the system evolves primarily in response to low frequency 
boundary conditions, it is often convenient to remove this term from the model 
[ 181. This is generally justilied on the grounds that the velocity, which is viewed as 
a means by which the system moves from one equilibrium state to another, remains 
small throughout the evolution of the system. Since the inclusion of this term in the 

.2 .4 .6 .8 1.0 
t/rfj 

FIG. 10. The same as Fig. 5 (anisotropic semi-implicit operatorj except that the term V * W has 
been set to zero throughout the simulation. 
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FIG. 11. The same as Fig. 9 (isotropic semi-implicit operator) except that the term V 1 
set to zero throughout the simulation. 

has been 

present algorithm requires an additional 18 three- sional 
med, its neglect would result in a more efficient c ation. 
what extent the neglect of this term affects the long-time seal 
that we are attempting to model. 

The results of these computations are shown in Figs. 1 and 11, where we 
the modal energy as a function of time for both the anis ropic (Fig. 10) and 
isotropic (Fig. 11) semi-implicit operators excluding the term 
equation of motion. Note that, for both cases, the final nonli 
between the (I, - 3) and (1, - 4) modes does not occur; rather the periodic energy 
exchange between the (1, -2) and (1, -3) continues tbrough~~t the ~a~~~~at~~~s~ 
The final distribution of energy among the modes differs s~g~i~ca~~ly actor 
the inclusion of V. W. In the case of the anisotropic o erator, Figs. 5 an 
resistive steady-state is not attained unless V * BV is include . Thus the details of 

onlinear evolution differ significantly between the models. 
n the other hand, the time evolution of global quantities such as the field rever- 

sal parameter d”= B,(a)/BZave are qualitatively unaffected by the absence of V * 
This is illustrated in Fig. 12ad, where we plot F as a function of time for the four 
cases presented in this and the previous section. In all cases, a time average reversed 
state with Fz -0.075 is reached and maintained indefinitely. Thus, while t 

FP dynamo mechanism is unaffected, the details of the relaxation process are 
altered by the removal of V SW from the model. 
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FIG. 12. Field reversal parameter F= B,(u)/B,~~ versus time for the four cases presented in Sections 
4.3 and 4.4: (a) anisotropic with V *VV; (b) isotropic with V-W; (c) anisotropic without V*VV; 
(d) isotropic without V * W. 

5. SUMMARY AND CONCLUSIONS 

We have presented a simple, accurate, and efficient algorithm for the long-time- 
scale numerical simulation of long wavelength, low frequency, MHD motions for 
which geometric effects are important. The algorithm incorporates nonideal, time- 
dependent boundary conditions in a natural way, and is thus appropriate for the 
dynamical simulation of systems driven by low frequency external agencies. 
Resistivity and viscosity are included in the model. 

We have presented a general discussion of the semi-implicit algorithm, and have 
explicitly displayed its effect on the accuracy of the solution. Such considerations 
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may guide the choice of the semi-implicit operator for bot 
physical models. We have given both formal and beuristi 
remarkable stabilizing properties of the method. 

We have displayed two particular forms of the semi-implicit operator for the 
D equations, and have compared and contrasted their effect on known 

solutions by performing both linear and nonlinear three-dimensional corn 
In the linear phase, we have found that the inclusion of anisotropy in 
implicit operator allows accurate computations to be performed with 
approximately twice as large as required by an extremely simple isotr 
In the far nonlinear phase both isotropic and anisotropic forms y 

hysical phenomena, the primary difference being that the relevant frequencies are 
ecreased by approximately 30% when the isotropic form is employed. Ea 

semi-implicit computations on the resistive diffusion time scale at S = 103 
approximately 2 hours of CPU time on a CRAY-I computer. We estimat 
same computations would require over 100 CPIJ h if each were ~crf~~~e~ 
explicitly. 

Finally, we have shown that the nonlinear advective term V * is required to 
simulate the details of the nonlinear physics. owever, global effects can be 
reproduced if this term is deleted from the model. 

We conclude that the semi-implicit method is a sim le, fast, and accurate 
algorithm for three-dimensional MHD simulations. It simple because it is 
extremely easy to implement, even in existing codes. (This is especially true in the 
case of the isotropic operator.) It is fast because the computation time per time step 
is dominated by the evaluation of nonlinear convolutions. Since (for the case of 
doubly periodic system) the semi-implicit method requires only the solution of 
linear tridiagonal systems, it requires essentially the same C U time per time st 
as explicit methods, while allowing time steps that may be orders of magnitu 
larger. It is accurate because the semi-implicit operator can be chosen to mimic the 
MHD operator for modes of interest. However, a simple isotropic operator yiel 
long-time-scale results that are surprisingly good, and is extremely easy to 
implement. The ability to simulate driven systems for times that are sig~i~car~t frac- 
tions of the resistive diffusion time has led to an identification of previously 
unknown nonlinear behavior. 

APPENDIX 

In this Appendix we explicitly display the form of the anisotropic semi-am 
operator, based on Eq. (24), used in this work 

(G*V)F=(C;+C;);f r% - 
( i 
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(82) 

(c.v),=C:fg(~~)-[m2c~~c~+(c~+cb)k2] v,, (A3) 

where Cf, Ci, and Ci are determined by Eq. (25). 
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